MC1-Project-1-Test-Cases-spr2016
Jump to navigation
Jump to search
portfolio_test_cases = [ PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2010-12-31', symbol_allocs=OrderedDict([('GOOG', 0.2), ('AAPL', 0.3), ('GLD', 0.4), ('XOM', 0.1)]), start_val=1000000), outputs=dict( cum_ret=0.255646784534, avg_daily_ret=0.000957366234238, sharpe_ratio=1.51819243641), description="Wiki example 1" ), PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2010-12-31', symbol_allocs=OrderedDict([('AXP', 0.0), ('HPQ', 0.0), ('IBM', 0.0), ('HNZ', 1.0)]), start_val=1000000), outputs=dict( cum_ret=0.198105963655, avg_daily_ret=0.000763106152672, sharpe_ratio=1.30798398744), description="Wiki example 2" ), PortfolioTestCase( inputs=dict( start_date='2010-06-01', end_date='2010-12-31', symbol_allocs=OrderedDict([('GOOG', 0.2), ('AAPL', 0.3), ('GLD', 0.4), ('XOM', 0.1)]), start_val=1000000), outputs=dict( cum_ret=0.205113938792, avg_daily_ret=0.00129586924366, sharpe_ratio=2.21259766672), description="Wiki example 3: Six month range" ), PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2010-12-31', symbol_allocs=OrderedDict([('GOOG', 0.2), ('AAPL', 0.4), ('GLD', 0.2), ('XOM', 0.2)]), start_val=1000000), outputs=dict( cum_ret=0.262285147745, avg_daily_ret=0.000993303139465, sharpe_ratio=1.3812384175), description="Wiki example 1 with different allocations" ), PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2013-05-31', symbol_allocs=OrderedDict([('AXP', 0.3), ('HPQ', 0.5), ('IBM', 0.1), ('GOOG', 0.1)]), start_val=1000000), outputs=dict( cum_ret=-0.110888530433, avg_daily_ret=-6.50814806831e-05, sharpe_ratio=-0.0704694718385), description="Normalization check" ), PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2010-01-31', symbol_allocs=OrderedDict([('AXP', 0.9), ('HPQ', 0.0), ('IBM', 0.1), ('GOOG', 0.0)]), start_val=1000000), outputs=dict( cum_ret=-0.0758725033871, avg_daily_ret=-0.00411578300489, sharpe_ratio=-2.84503813366), description="One month range" ), PortfolioTestCase( inputs=dict( start_date='2011-01-01', end_date='2011-12-31', symbol_allocs=OrderedDict([('WFR', 0.25), ('ANR', 0.25), ('MWW', 0.25), ('FSLR', 0.25)]), start_val=1000000), outputs=dict( cum_ret=-0.686004563165, avg_daily_ret=-0.00405018240566, sharpe_ratio=-1.93664660013), description="Low Sharpe ratio" ), PortfolioTestCase( inputs=dict( start_date='2010-01-01', end_date='2010-12-31', symbol_allocs=OrderedDict([('AXP', 0.0), ('HPQ', 1.0), ('IBM', 0.0), ('HNZ', 0.0)]), start_val=1000000), outputs=dict( cum_ret=-0.191620333598, avg_daily_ret=-0.000718040989619, sharpe_ratio=-0.71237182415), description="All your eggs in one basket" ), PortfolioTestCase( inputs=dict( start_date='2010-06-01', end_date='2011-06-01', symbol_allocs=OrderedDict([('AAPL', 0.1), ('GLD', 0.4), ('GOOG', 0.5), ('XOM', 0.0)]), start_val=1000000), outputs=dict( cum_ret=0.177352039318, avg_daily_ret= 0.000694756409052, sharpe_ratio=1.10895144722), description="Mid-2010 to mid-2011" ), PortfolioTestCase( inputs=dict( start_date='2006-01-03', end_date='2008-01-02', symbol_allocs=OrderedDict([('MMM', 0.0), ('MO', 0.9), ('MSFT', 0.1), ('INTC', 0.0)]), start_val=1000000), outputs=dict( cum_ret=0.43732715979, avg_daily_ret=0.00076948918955, sharpe_ratio=1.26449481371), description="Two year range" ) ]