Difference between revisions of "Learning Algorithms for Trading"

From Quantitative Analysis Software Courses
Jump to navigation Jump to search
Line 1: Line 1:
 
==Lesson 1: How Machine Learning is used at a hedge fund==
 
==Lesson 1: How Machine Learning is used at a hedge fund==
 +
*Overview of use and backtesting
 +
**Out of sample
 +
**Roll forward cross validation
 
*Supervised ML
 
*Supervised ML
 
**Use: Regression
 
**Use: Regression

Revision as of 12:14, 14 July 2015

Lesson 1: How Machine Learning is used at a hedge fund

  • Overview of use and backtesting
    • Out of sample
    • Roll forward cross validation
  • Supervised ML
    • Use: Regression
    • Use: Classification
    • Model type: Parametric
    • Model type: Instance-based
  • Reinforcement Learning
    • Use: Find a policy
  • Overview: LinReg, KNN, Decision Trees, Q-Learning

Lesson 2: Q-Learning and Dyna

  • Long/short

Lesson 3: Time series prediction as an ML problem

[note: need to create fake stock data that has embedded patterns]

Lesson 4: Learner APIs

Lesson 5: Linear regression

Lesson 6: KNN

Lesson 7: Assessing a learning algorithm

  • Now that we have two, (linreg & KNN), let's compare them
  • RMS error
  • Scatterplot predict vs actual
  • Corrcoef

Lesson 8: Overfitting

Lesson 9: Decision trees

Lesson 10: Ensemble learners & bagging

Lesson 11: Random trees & forests