Difference between revisions of "MC3-Project-5"

From Quantitative Analysis Software Courses
Jump to navigation Jump to search
(Created page with "In order to access this project you will be required to answer the following questions: * What is your name? * What is your favorite color? * What is the velocity of an unlad...")
 
Line 1: Line 1:
In order to access this project you will be required to answer the following questions:
+
==Updates / FAQs==
  
* What is your name?
+
* '''2017-04-21''' First draft
* What is your favorite color?
 
* What is the velocity of an unladen swallow?
 
  
Go prepare yourself for this test, then return when you are ready.
+
==Overview==
 +
 
 +
In this project you will implement a solution the Reinforcement Learning problem with continuous multivariate state.  In an earlier project, you solved this problem using Q-Learning with one dimensional discrete states.  We will test your implementation in the context of a robot navigation problem.  The problems are exactly the same as those presented in the earlier project except that instead of you being presented with a single dimensional discrete state you will receive a multidimensional continuous state. 
 +
 
 +
We will not review all the details of the problem here because they are available in the earlier project description.
 +
 
 +
We will provide testqlearner.py that automates testing of your learner in the navigation problem.  Overall, your tasks for this project include:
 +
 
 +
* Code a continuous reinforcement learner CRLearner
 +
* Test/debug the learner in navigation problems
 +
 
 +
For this assignment we will test only your code (there is no report component).
 +
 
 +
==Template and Data==
 +
 
 +
'''template not yet available'''
 +
 
 +
* Update your local mc3_p5 directory using github.
 +
* Implement the <tt>CRLearner</tt> class in <tt>mc3_p5/CRLearner.py</tt>.
 +
* To test your CRLearner, run <tt>'''python testqlearner.py'''</tt> from the <tt>mc3_p5/</tt> directory.
 +
* Note that example navigation problems are provided in the <tt>mc3_p5/testworlds</tt> directory
 +
 
 +
==Part 1: Implement CRLearner==
 +
 
 +
Your CRLearner class should be implemented in the file <tt>CRLearner.py</tt>.  It should implement EXACTLY the API defined below.  DO NOT import any modules besides those allowed below.  Your class should implement the following methods:
 +
 
 +
Details on the input arguments to the constructor:
 +
 
 +
* <tt>num_dimensions</tt> integer, the number of continuous dimensions in the state
 +
* <tt>num_actions</tt>  integer, the number of actions available.
 +
 
 +
<b>query(s_prime, r)</b> is the core method of the CRLearner.  It should keep track of the last state s and the last action a, then use the new information s_prime and r to update its internal policy.  The learning instance, or experience tuple is <s, a, s_prime, r>.  query() should return an integer, which is the next action to take.  Details on the arguments:
 +
 
 +
* <tt>s_prime</tt> a one-dimensional ndarray,
 +
* <tt>r</tt> float, a real valued immediate reward.
 +
 
 +
<b>querysetstate(s)</b> A special version of the query method that sets the state to s, and returns an integer action according to the same rules as query()
 +
 
 +
Here's an example of the API in use:
 +
 
 +
<PRE>
 +
import CRLearner as cr
 +
import numpy a np
 +
 
 +
learner = cr.CRLearner(num_dimensions = 2, \
 +
    num_actions = 4)
 +
 
 +
s = 99 # our initial state
 +
 
 +
a = learner.querysetstate(s) # action for state s
 +
 
 +
s_prime = 5 # the new state we end up in after taking action a in state s
 +
 
 +
r = 0 # reward for taking action a in state s
 +
 
 +
next_action = learner.query(s_prime, r)
 +
</PRE>
 +
 
 +
==Part 2: Navigation Problem Test Cases==
 +
 
 +
We will test your Q-Learner with a navigation problem as follows.  Note that your Q-Learner does not need to be coded specially for this task.  In fact the code doesn't need to know anything about it.  The code necessary to test your learner with this navigation task is implemented in testqlearner.py for you.  The navigation task takes place in a 10 x 10 grid world.  The particular environment is expressed in a CSV file of integers, where the value in each position is interpreted as follows:
 +
 
 +
* 0: blank space.
 +
* 1: an obstacle.
 +
* 2: the starting location for the robot.
 +
* 3: the goal location.
 +
* 5: quicksand.
 +
 
 +
An example navigation problem (world01.csv) is shown below.  Following python conventions, [0,0] is upper left, or northwest corner, [9,9] lower right or southeast corner.  Rows are north/south, columns are east/west.
 +
 
 +
<PRE>
 +
3,0,0,0,0,0,0,0,0,0
 +
0,0,0,0,0,0,0,0,0,0
 +
0,0,0,0,0,0,0,0,0,0
 +
0,0,1,1,1,1,1,0,0,0
 +
0,5,1,0,0,0,1,0,0,0
 +
0,5,1,0,0,0,1,0,0,0
 +
0,0,1,0,0,0,1,0,0,0
 +
0,0,0,0,0,0,0,0,0,0
 +
0,0,0,0,0,0,0,0,0,0
 +
0,0,0,0,2,0,0,0,0,0
 +
</PRE>
 +
 
 +
In this example the robot starts at the bottom center, and must navigate to the top left.  Note that a wall of obstacles blocks its path, and there is some quicksand along the left side.  The objective is for the robot to learn how to navigate from the starting location to the goal with the highest total reward.  We define the reward for each step as:
 +
* -1 if the robot moves to an empty or blank space, or attempts to move into a wall
 +
* -100 if the robot moves to a quicksand space
 +
* 1 if the robot moves to the goal space
 +
 
 +
Overall, we will assess the performance of a policy as the average reward it incurs to travel from the start to the goal (higher reward is better).  We assess a learner in terms of the reward it converges to over a given number of training iterations (trips from start to goal).  '''Important note:''' the problem includes random actions.  So, for example, if your learner responds with a "move north" action, there is some probability that the robot will actually move in a different direction.  For this reason, the "wise" learner develops policies that keep the robot well away from quicksand.  We map this problem to a reinforcement learning problem as follows:
 +
 
 +
* State: The state is the location of the robot, it is computed (discretized) as: column location * 10 + row location.
 +
* Actions: There are 4 possible actions, 0: move north, 1: move east, 2: move south, 3: move west.
 +
* R: The reward is as described above.
 +
* T: The transition matrix can be inferred from the CSV map and the actions.
 +
 
 +
Note that R and T are not known by or available to the learner.  The testing code <tt>testqlearner.py</tt> will test your code as follows (pseudo code):
 +
 
 +
<pre>
 +
Instantiate the learner with the constructor QLearner()
 +
s = initial_location
 +
a = querysetstate(s)
 +
s_prime = new location according to action a
 +
r = -1.0
 +
while not converged:
 +
    a = query(s_prime, r)
 +
    s_prime = new location according to action a
 +
    if s_prime == goal:
 +
        r = +1
 +
        s_prime = start location
 +
    else if s_prime == quicksand:
 +
        r = -100
 +
    else:
 +
        r = -1
 +
</pre>
 +
 
 +
A few things to note about this code: The learner always receives a reward of -1.0 (or -100.0) until it reaches the goal, when it receives a reward of +1.0. As soon as the robot reaches the goal, it is immediately returned to the starting location.
 +
 
 +
Here are example solutions.  Note that these examples were created before we added "quicksand" to the project.  We will be updating the examples to reflect this change.  In the mean time, you may find these useful:
 +
 
 +
[[mc3_p2_examples]]
 +
 
 +
[[mc3_p2_dyna_examples]]
 +
 
 +
==Part 3: Implement Dyna (5%)==
 +
 
 +
Add additional components to your QLearner class so that multiple "hallucinated" experience tuples are used to update the Q-table for each "real" experience.  The addition of this component should speed convergence in terms of the number of calls to query().
 +
 
 +
Note that it is not important that you implement Dyna exactly as described in the lecture.  The key requirement is that your code should somehow hallucinate additional experiences.  The precise method you use for discovering those experiences is flexible.  We will test your code on several test worlds with 50 iterations and with dyna = 200.  Our expectation is that with Dyna, the solution should be much better after 50 iterations than without.
 +
 
 +
==Part 4: Implement author() Method (0%)==
 +
 
 +
You  should implement a method called <tt>author()</tt> that returns your Georgia Tech user ID as a string. This is the ID you use to log into t-square.  It is not your 9 digit student number.  Here is an example of how you might implement author() within a learner object:
 +
 
 +
<pre>
 +
class QLearner(object):
 +
    def author(self):
 +
        return 'tb34' # replace tb34 with your Georgia Tech username.
 +
</pre>
 +
 
 +
And here's an example of how it could be called from a testing program:
 +
 
 +
<pre>
 +
    # create a learner and train it
 +
    learner = ql.QLearner() # create a QLearner
 +
    print learner.author()
 +
</pre>
 +
 
 +
Check the template code for examples. We are adding those to the repo now, but it might not be there if you check right away.  Implementing this method correctly does not provide any points, but there will be a penalty for not implementing it.
 +
 
 +
==Contents of Report==
 +
 
 +
There is no report component of this assignment.  However, if you would like to impress us with your Machine Learning prowess, you are invited to submit a succinct report.
 +
 
 +
==Hints & resources==
 +
 
 +
This paper by Kaelbling, Littman and Moore, is a good resource for RL in general: http://www.jair.org/media/301/live-301-1562-jair.pdf  See Section 4.2 for details on Q-Learning.
 +
 
 +
There is also a chapter in the Mitchell book on Q-Learning.
 +
 
 +
For implementing Dyna, you may find the following resources useful:
 +
 
 +
* https://webdocs.cs.ualberta.ca/~sutton/book/ebook/node96.html
 +
* http://www-anw.cs.umass.edu/~barto/courses/cs687/Chapter%209.pdf
 +
 
 +
==What to turn in==
 +
 
 +
Turn your project in via t-square.  All of your code must be contained within QLearner.py .
 +
 
 +
* Your QLearner as <tt>QLearner.py</tt>
 +
* Do not submit any other files.
 +
 
 +
==Rubric==
 +
 
 +
Only your QLearner class will be tested. 
 +
 
 +
* For basic Q-Learning (dyna = 0) we will test your learner against 10 test worlds with 500 iterations in each world.  One "iteration" means your robot reaches the goal one time.  Your QLearner retains its state (Q-table), and then we allow it to navigate to the goal again, over and over, 500 times.  Each test (500 iterations) should complete in less than 2 seconds. 
 +
* Benchmark: As a benchmark to compare your solution to, we will run our reference solution in the same world, with 500 iterations.  We will take the median reward of our reference across all of those 500 iterations.
 +
* Your score: For each world we will take the median cost your solution finds across all 500 iterations.
 +
* For a test to be successful, your learner should find a total reward >= 1.5 x the benchmark.
 +
* There are 10 test cases, each test case is worth 9.5 points.
 +
 
 +
<Pre>
 +
    learner = ql.QLearner(num_states=100,\
 +
        num_actions = 4, \
 +
        alpha = 0.2, \
 +
        gamma = 0.9, \
 +
        rar = 0.98, \
 +
        radr = 0.999, \
 +
        dyna = 0, \
 +
        verbose=False) #initialize the learner
 +
</PRE>
 +
 
 +
* For Dyna-Q, we will set dyna = 200.  We will test your learner against <tt>world01.csv</tt> and <tt>world02.csv</tt> with 50 iterations.  Scoring is similar to the non-dyna case: Each test should complete in less than 10 seconds. For the test to be successful, your learner should find solution with total reward to the goal >= 1.5 x the  median reward our reference solution across all iterations.  We will check this by taking the median of all 50 runs. Each test case is worth 2.5 points.  We will initialize your learner with the following parameter values:
 +
 
 +
<Pre>
 +
    learner = ql.QLearner(num_states=100,\
 +
        num_actions = 4, \
 +
        alpha = 0.2, \
 +
        gamma = 0.9, \
 +
        rar = 0.5, \
 +
        radr = 0.99, \
 +
        dyna = 200, \
 +
        verbose=False) #initialize the learner
 +
</PRE>
 +
 
 +
* Is the author() method correctly implemented (-20% if not)
 +
 
 +
==Required, Allowed & Prohibited==
 +
 
 +
Required:
 +
* Your project must be coded in Python 2.7.x.
 +
* Your code must run on one of the university-provided computers (e.g. buffet02.cc.gatech.edu).
 +
 
 +
Allowed:
 +
* You can develop your code on your personal machine, but it must also run successfully on one of the university provided machines or virtual images.
 +
* Your code may use standard Python libraries.
 +
* You may use the NumPy, SciPy, matplotlib and Pandas libraries.  Be sure you are using the correct versions.
 +
* You may reuse sections of code (up to 5 lines) that you collected from other students or the internet.
 +
* Code provided by the instructor, or allowed by the instructor to be shared.
 +
 
 +
Prohibited:
 +
* Any libraries not listed in the "allowed" section above.
 +
* Any code you did not write yourself (except for the 5 line rule in the "allowed" section).
 +
* Any Classes (other than Random) that create their own instance variables for later use (e.g., learners like kdtree).
 +
* Print statements outside "verbose" checks (they significantly slow down auto grading).
 +
* Any method for reading data besides util.py
 +
 
 +
==Legacy==
 +
 
 +
*[[MC3-Project-2-Legacy-trader]]
 +
*[[MC3-Project-2-Legacy]]
 +
*[[MC3-Project-4]]

Revision as of 18:47, 21 April 2017

Updates / FAQs

  • 2017-04-21 First draft

Overview

In this project you will implement a solution the Reinforcement Learning problem with continuous multivariate state. In an earlier project, you solved this problem using Q-Learning with one dimensional discrete states. We will test your implementation in the context of a robot navigation problem. The problems are exactly the same as those presented in the earlier project except that instead of you being presented with a single dimensional discrete state you will receive a multidimensional continuous state.

We will not review all the details of the problem here because they are available in the earlier project description.

We will provide testqlearner.py that automates testing of your learner in the navigation problem. Overall, your tasks for this project include:

  • Code a continuous reinforcement learner CRLearner
  • Test/debug the learner in navigation problems

For this assignment we will test only your code (there is no report component).

Template and Data

template not yet available

  • Update your local mc3_p5 directory using github.
  • Implement the CRLearner class in mc3_p5/CRLearner.py.
  • To test your CRLearner, run python testqlearner.py from the mc3_p5/ directory.
  • Note that example navigation problems are provided in the mc3_p5/testworlds directory

Part 1: Implement CRLearner

Your CRLearner class should be implemented in the file CRLearner.py. It should implement EXACTLY the API defined below. DO NOT import any modules besides those allowed below. Your class should implement the following methods:

Details on the input arguments to the constructor:

  • num_dimensions integer, the number of continuous dimensions in the state
  • num_actions integer, the number of actions available.

query(s_prime, r) is the core method of the CRLearner. It should keep track of the last state s and the last action a, then use the new information s_prime and r to update its internal policy. The learning instance, or experience tuple is <s, a, s_prime, r>. query() should return an integer, which is the next action to take. Details on the arguments:

  • s_prime a one-dimensional ndarray,
  • r float, a real valued immediate reward.

querysetstate(s) A special version of the query method that sets the state to s, and returns an integer action according to the same rules as query()

Here's an example of the API in use:

import CRLearner as cr
import numpy a np

learner = cr.CRLearner(num_dimensions = 2, \
    num_actions = 4)

s = 99 # our initial state

a = learner.querysetstate(s) # action for state s

s_prime = 5 # the new state we end up in after taking action a in state s

r = 0 # reward for taking action a in state s

next_action = learner.query(s_prime, r)

Part 2: Navigation Problem Test Cases

We will test your Q-Learner with a navigation problem as follows. Note that your Q-Learner does not need to be coded specially for this task. In fact the code doesn't need to know anything about it. The code necessary to test your learner with this navigation task is implemented in testqlearner.py for you. The navigation task takes place in a 10 x 10 grid world. The particular environment is expressed in a CSV file of integers, where the value in each position is interpreted as follows:

  • 0: blank space.
  • 1: an obstacle.
  • 2: the starting location for the robot.
  • 3: the goal location.
  • 5: quicksand.

An example navigation problem (world01.csv) is shown below. Following python conventions, [0,0] is upper left, or northwest corner, [9,9] lower right or southeast corner. Rows are north/south, columns are east/west.

3,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,1,1,1,1,1,0,0,0
0,5,1,0,0,0,1,0,0,0
0,5,1,0,0,0,1,0,0,0
0,0,1,0,0,0,1,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,0,0,0,0,0,0
0,0,0,0,2,0,0,0,0,0

In this example the robot starts at the bottom center, and must navigate to the top left. Note that a wall of obstacles blocks its path, and there is some quicksand along the left side. The objective is for the robot to learn how to navigate from the starting location to the goal with the highest total reward. We define the reward for each step as:

  • -1 if the robot moves to an empty or blank space, or attempts to move into a wall
  • -100 if the robot moves to a quicksand space
  • 1 if the robot moves to the goal space

Overall, we will assess the performance of a policy as the average reward it incurs to travel from the start to the goal (higher reward is better). We assess a learner in terms of the reward it converges to over a given number of training iterations (trips from start to goal). Important note: the problem includes random actions. So, for example, if your learner responds with a "move north" action, there is some probability that the robot will actually move in a different direction. For this reason, the "wise" learner develops policies that keep the robot well away from quicksand. We map this problem to a reinforcement learning problem as follows:

  • State: The state is the location of the robot, it is computed (discretized) as: column location * 10 + row location.
  • Actions: There are 4 possible actions, 0: move north, 1: move east, 2: move south, 3: move west.
  • R: The reward is as described above.
  • T: The transition matrix can be inferred from the CSV map and the actions.

Note that R and T are not known by or available to the learner. The testing code testqlearner.py will test your code as follows (pseudo code):

Instantiate the learner with the constructor QLearner()
s = initial_location
a = querysetstate(s)
s_prime = new location according to action a
r = -1.0
while not converged:
    a = query(s_prime, r) 
    s_prime = new location according to action a
    if s_prime == goal:
        r = +1
        s_prime = start location
    else if s_prime == quicksand:
        r = -100
    else:
        r = -1

A few things to note about this code: The learner always receives a reward of -1.0 (or -100.0) until it reaches the goal, when it receives a reward of +1.0. As soon as the robot reaches the goal, it is immediately returned to the starting location.

Here are example solutions. Note that these examples were created before we added "quicksand" to the project. We will be updating the examples to reflect this change. In the mean time, you may find these useful:

mc3_p2_examples

mc3_p2_dyna_examples

Part 3: Implement Dyna (5%)

Add additional components to your QLearner class so that multiple "hallucinated" experience tuples are used to update the Q-table for each "real" experience. The addition of this component should speed convergence in terms of the number of calls to query().

Note that it is not important that you implement Dyna exactly as described in the lecture. The key requirement is that your code should somehow hallucinate additional experiences. The precise method you use for discovering those experiences is flexible. We will test your code on several test worlds with 50 iterations and with dyna = 200. Our expectation is that with Dyna, the solution should be much better after 50 iterations than without.

Part 4: Implement author() Method (0%)

You should implement a method called author() that returns your Georgia Tech user ID as a string. This is the ID you use to log into t-square. It is not your 9 digit student number. Here is an example of how you might implement author() within a learner object:

class QLearner(object):
    def author(self):
        return 'tb34' # replace tb34 with your Georgia Tech username.

And here's an example of how it could be called from a testing program:

    # create a learner and train it
    learner = ql.QLearner() # create a QLearner
    print learner.author()

Check the template code for examples. We are adding those to the repo now, but it might not be there if you check right away. Implementing this method correctly does not provide any points, but there will be a penalty for not implementing it.

Contents of Report

There is no report component of this assignment. However, if you would like to impress us with your Machine Learning prowess, you are invited to submit a succinct report.

Hints & resources

This paper by Kaelbling, Littman and Moore, is a good resource for RL in general: http://www.jair.org/media/301/live-301-1562-jair.pdf See Section 4.2 for details on Q-Learning.

There is also a chapter in the Mitchell book on Q-Learning.

For implementing Dyna, you may find the following resources useful:

What to turn in

Turn your project in via t-square. All of your code must be contained within QLearner.py .

  • Your QLearner as QLearner.py
  • Do not submit any other files.

Rubric

Only your QLearner class will be tested.

  • For basic Q-Learning (dyna = 0) we will test your learner against 10 test worlds with 500 iterations in each world. One "iteration" means your robot reaches the goal one time. Your QLearner retains its state (Q-table), and then we allow it to navigate to the goal again, over and over, 500 times. Each test (500 iterations) should complete in less than 2 seconds.
  • Benchmark: As a benchmark to compare your solution to, we will run our reference solution in the same world, with 500 iterations. We will take the median reward of our reference across all of those 500 iterations.
  • Your score: For each world we will take the median cost your solution finds across all 500 iterations.
  • For a test to be successful, your learner should find a total reward >= 1.5 x the benchmark.
  • There are 10 test cases, each test case is worth 9.5 points.
    learner = ql.QLearner(num_states=100,\
        num_actions = 4, \
        alpha = 0.2, \
        gamma = 0.9, \
        rar = 0.98, \
        radr = 0.999, \
        dyna = 0, \
        verbose=False) #initialize the learner
  • For Dyna-Q, we will set dyna = 200. We will test your learner against world01.csv and world02.csv with 50 iterations. Scoring is similar to the non-dyna case: Each test should complete in less than 10 seconds. For the test to be successful, your learner should find solution with total reward to the goal >= 1.5 x the median reward our reference solution across all iterations. We will check this by taking the median of all 50 runs. Each test case is worth 2.5 points. We will initialize your learner with the following parameter values:
    learner = ql.QLearner(num_states=100,\
        num_actions = 4, \
        alpha = 0.2, \
        gamma = 0.9, \
        rar = 0.5, \
        radr = 0.99, \
        dyna = 200, \
        verbose=False) #initialize the learner
  • Is the author() method correctly implemented (-20% if not)

Required, Allowed & Prohibited

Required:

  • Your project must be coded in Python 2.7.x.
  • Your code must run on one of the university-provided computers (e.g. buffet02.cc.gatech.edu).

Allowed:

  • You can develop your code on your personal machine, but it must also run successfully on one of the university provided machines or virtual images.
  • Your code may use standard Python libraries.
  • You may use the NumPy, SciPy, matplotlib and Pandas libraries. Be sure you are using the correct versions.
  • You may reuse sections of code (up to 5 lines) that you collected from other students or the internet.
  • Code provided by the instructor, or allowed by the instructor to be shared.

Prohibited:

  • Any libraries not listed in the "allowed" section above.
  • Any code you did not write yourself (except for the 5 line rule in the "allowed" section).
  • Any Classes (other than Random) that create their own instance variables for later use (e.g., learners like kdtree).
  • Print statements outside "verbose" checks (they significantly slow down auto grading).
  • Any method for reading data besides util.py

Legacy