Difference between revisions of "CS7646 Fall 2016"

From Quantitative Analysis Software Courses
Jump to navigation Jump to search
Line 37: Line 37:
 
* [[http://quantsoftware.gatech.edu/MC3-Project-2 MC3-Project-2]]
 
* [[http://quantsoftware.gatech.edu/MC3-Project-2 MC3-Project-2]]
 
* [[http://quantsoftware.gatech.edu/MC3-Project-3 MC3-Project-3]]
 
* [[http://quantsoftware.gatech.edu/MC3-Project-3 MC3-Project-3]]
 
==Prerequisites/Co-requisites==
 
 
All types of students are welcome! The Machine Learning topics might be "review" for CS students, while finance parts will be review for finance students. However, even if you have experience in these topics, you will find that we consider them in a different way than you might have seen before, in particular with an eye towards implementation for trading.
 
 
If you answer "no" to the following questions, it may be beneficial to refresh your knowledge of the prerequisite material prior to taking CS 7646:
 
 
* Do you have a working knowledge of basic statistics, including probability distributions (such as normal and uniform), calculation and differences between mean, median and mode
 
* Do you understand the difference between geometric mean and arithmetic mean?
 
* Do you have strong programming skills? Take this quiz [[compinvesti-prog-quiz]] if you would like help determining the strength of your programming skills.
 
 
Who this course is for: The course is intended for people with strong software programming experience and introductory level knowledge of investment practice. A primary prerequisite is an interest and excitement about the stock market.
 
 
Software we'll use: In order to complete the programming assignments you will need to a development environment that you're comfortable with.  We use Unix, but you can also work with Windows and Mac OS environments.  You must download and install a set of Python modules to your computer (including NumPy, SciPy, and Pandas).
 
 
How to install the software: [[ML4T Software Installation]]
 
  
 
==Logistics==
 
==Logistics==

Revision as of 10:58, 24 August 2016

Overview

This page covers material specific to the current semester. Please visit the main course page for an overall course introduction and policies: [Machine_Learning_for_Trading_Course].

2016 Fall Schedule

Assignments & Grading

  • [MC1-Project-1: Assess portfolio] 5%
  • [MC1-Project-2: Optimize a portfolio] 5%
  • MC3-Project-1: Implement and assess a regression learner using decision trees and random forests 15%
  • MC2-Project-1: Build a market simulator 15%
  • MC2-Homework-1: Create two midterm questions 5%
  • Midterm 20%
  • MC3-Project-2: Implement your own "manual" quant strategy, then do it with decision tree classification, compare 10%
  • MC3-Project-3: Q-learning maze navigation 10%
  • MC3-Project-4: Q-learning trader 15%
  • Piazza participation, up to 2% bonus for the most helpful contributors.

Thresholds:

  • A: 90% and above
  • B: 80% and above
  • C: 70% and above
  • D: 60% and above
  • F: below 60%

The projects linked to below are from previous semesters. We keep them here so you can peek ahead, but please keep in mind that they will be revised.

Logistics

Minimum technical requirements

  • Browser and connection speed: An up-to-date version of Chrome or Firefox is strongly recommended. We also support Internet Explorer 9 and the desktop versions of Internet Explorer 10 and above (not the metro versions). 2+ Mbps recommended; at minimum 0.768 Mbps download speed.
  • Hardware: A computer with at least 4GB of RAM and CPU speed of at least 2.5GHz.
  • OS:
    • PC: Windows XP or higher with latest updates installed
    • Mac: OS X 10.6 or higher with latest updates installed
    • Linux: Any recent distribution that has the supported browsers installed

Office hours

To be determined.

Plagiarism

In most cases I expect that all submitted code will be written by you. I will present some libraries in class that you are allowed to use (such as pandas and numpy). Otherwise, all source code, images and write-ups you provide should have been created by you alone.

Late Policy & Absences

Assignments are due at 11:55PM Eastern Time on the assignment due date. Assignments turned in after 11:55PM are considered late. Assignments may be turned in up to one day late with a 10% penalty.

Exams will be held on specific days at specific times. If there is an emergency or other issue that requires changing the date of an exam for you, you will need to have it approved by the Dean of Students. You can apply for that here:

Legacy